Answer:
The resultant velocity is 360.5 m/s and direction 79° north of east.
Explanation:
Given that,
Velocity of airplane = 300 m/s
Velocity of wind = 100 m/s
Angle θ₁ = 25°
Angle θ₂ =35°
The horizontal velocity component
Using formula of velocity
[tex]v_{x}=v_{1}\cos\theta-v_{2}\cos\theta[/tex]
Put the value into the formula
[tex]v_{x}=300\cos65-100\cos55[/tex]
[tex]v_{x}=69.42\ m/s[/tex]
The vertical velocity component
Using formula of velocity
[tex]v_{y}=v_{1}\sin\theta+v_{2}\sin\theta[/tex]
Put the value into the formula
[tex]v_{y}=300\sin65+100\sin55[/tex]
[tex]v_{y}=353.8\ m/s[/tex]
We need to calculate the resultant velocity
Using formula of resultant velocity
[tex]v=\sqrt{v_{x}^2+v_{y}^2}[/tex]
Put the value into the formula
[tex]v=\sqrt{69.42^2+353.8^2}[/tex]
[tex]v=360.5\ m/s[/tex]
We need to calculate the direction of the resultant velocity
Using formula of direction
[tex]\tan\theta=\dfrac{v_{y}}{v_{x}}[/tex]
Put the value into the formula
[tex]\theta=\tan^{-1}(\dfrac{353.8}{69.42})[/tex]
[tex]\theta=79^{\circ}[/tex]
Hence, The resultant velocity is 360.5 m/s and direction 79° north of east.