Respuesta :
Answer:
0.043633125 rad/s²
50.26536 radians
10.47195 m/s
Explanation:
t = Time taken = 48 s
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_f=20\times \frac{2\pi}{60}=2.09439[/tex]
[tex]\omega_i[/tex] = Initial angular velocity = 0
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation
Equation of rotational motion
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{2.09439-0}{48}\\\Rightarrow a=0.043633125\ rad/s^2[/tex]
The average angular acceleration is 0.043633125 rad/s²
[tex]\theta=\omega_it+\frac{1}{2}\alpha t^2\\\Rightarrow \theta=0\times t+\frac{1}{2}\times 0.043633125\times 48^2\\\Rightarrow s=50.26536\ rad[/tex]
The displacement of the merry‑go‑round is 50.26536 radians
Maximum tangential speed is given by
[tex]v=\omega r\\\Rightarrow v=2.09439\times 5\\\Rightarrow v=10.47195\ m/s[/tex]
The maximum tangential speed of the child is 10.47195 m/s
(a) The angular velocity is given as [tex]w_f= 0.04363 \frac{rad}{s^2}[/tex]
(b) The angular displacement [tex]\theta =50.265 \ radians[/tex]
(c) The maximum tangential speed [tex]V= 10.471\frac{m}{s}[/tex]
What will be the angular velocity, angular displacement, and max tangential speed?
It is given that
t = Time taken = 48 s
[tex]w_f[/tex] = Final angular velocity
[tex]w-f=\dfrac{20\times2\pi}{60} =2.09439 \dfrac{rad}{s}[/tex]
[tex]w_i[/tex] = Initial angular velocity = 0
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation
Now by using the equation of rotation
[tex]w_f=w_i+\alpha t[/tex]
[tex]\alpha=\dfrac{w_f-w_i}{t} = \dfrac{2.09439-0}{48} =0.043633 \frac{rad}{s^2}[/tex]
Now for angular displacement
[tex]\theta =w_it+\dfrac{1}{2} \alpha t^2[/tex]
[tex]\theta=0\timest+0.5\times0.043633\times48^2[/tex]
[tex]\theta=50.265\ rad[/tex]
Maximum tangential speed is given by
[tex]V=wr[/tex]
[tex]V=2.0943\times5[/tex]
[tex]V=10.4719 \frac{m}{s}[/tex]
Thus
(a) The angular velocity is given as [tex]w_f= 0.04363 \frac{rad}{s^2}[/tex]
(b) The angular displacement [tex]\theta =50.265 \ radians[/tex]
(c) The maximum tangential speed [tex]V= 10.471\frac{m}{s}[/tex]
To know more about the Equation of angular motion follow
https://brainly.com/question/6860269