Respuesta :
Answer:3 minutes
Explanation:
Given
initial moment of Inertia [tex]I_1=10,000 kg.m^2[/tex]
Time Period [tex]T_1=1 minute [/tex]
Final Moment of Inertia [tex]I_2=30,000 kg.m^2[/tex]
Let T be the Time Period Of revolution
Conserving Angular Momentum
[tex]I_1\omega _1=I_2\omega _2[/tex]
[tex]I_1(\frac{2\pi }{T_1})=I_2(\frac{2\pi }{T})[/tex]
[tex]\frac{I_1}{T_1}=\frac{I_2}{T}[/tex]
[tex]\frac{10,000}{1}=\frac{30,000}{T}[/tex]
[tex]T=\frac{30,000}{10,000}=3 minutes[/tex]
i.e. 1 rotation in 3 minutes
Increasing the moment of inertia of the satellite makes it to complete a revolution in 3 mins hence slower
What is moment of Inertia of a rotating body?
moment of inertia, I is the measure of distibution of the mass of the body along the axis of rotatiton.
I = angular momentum, L / angular velocity, ω
L = I * ω
L1 = L2
I1 * ω1 = I2 * ω2 for an isolated system
10000 * 1 = 30000 * ω2
ω2 = 10000 / 30000
ω2 = 0.333rpm
initially the satellite is making one revolution per minute
ω1 = 1 revolution in 1 min
ω2 = 0.33 revolution in 1 min = 1 revolution in 3 min
Read more on moment of inertia here: https://brainly.com/question/3406242