Respuesta :
Answer:
Option 4 and 5.
Step-by-step explanation:
Consider the given polynomial equation is
[tex]x^{4}-4x^{3}=6x^{2}-12x[/tex]
We need to find approximate values of the non-integral roots of the polynomial equation.
[tex]x^{4}-4x^{3}-6x^{2}+12x[/tex]
Find factor form.
[tex]x(x^{3}-4x^{2}-6x^{1}+12)[/tex]
For x=-2 the value of parenthesis is 0. It means (x+2) is a factor of parenthesis.
Divide the parenthesis by (x+2). After division remainder is 0 and quotient is [tex](x^2 - 6 x + 6)[/tex], so the factor form is
[tex]x (x + 2) (x^2 - 6 x + 6)[/tex]
Equate the factor form equal to 0, to find the roots.
[tex]x (x + 2) (x^2 - 6 x + 6)=0[/tex]
[tex]x=0[/tex]
[tex]x+2=0\Rightarrow x=-2[/tex]
[tex]x^2 - 6 x + 6=0[/tex] .... (1)
Quadratic formula for [tex]ax^2+bx+c=0[/tex] is
[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
In (1), a=1, b=-6, c=6. Using quadratic formula we get
[tex]x=\dfrac{-(-6)\pm \sqrt{(-6)^2-4(1)(6)}}{2(1)}[/tex]
[tex]x=\dfrac{6\pm \sqrt{12}}{2}[/tex]
[tex]x=\dfrac{6\pm 2\sqrt{3}}{2}[/tex]
[tex]x=3\pm \sqrt{3}[/tex]
[tex]x=3+1.73, 3-1.73[/tex]
[tex]x=4.73, 1.27[/tex]
The approximate values of the non-integral roots of the polynomial equation are 4.73 and 1.27.
Therefore, the correct options are 4 and 5.