Answer:
[tex]\frac{27}{50\pi}\text{ cm per sec}[/tex]
Step-by-step explanation:
Since, the volume of the cone,
[tex]V =\frac{1}{3} \pi r^2 h----(1)[/tex]
Where,
r = radius,
h = height,
Differentiating equation (1) with respect to t ( time ),
[tex]\frac{dV}{dt}=\frac{1}{3}\pi \frac{d}{dx}(r^2 h)----(1)[/tex]
Since, radius and height of cone must proportional,
i.e [tex]\frac{r}{h}=\frac{4}{12}[/tex]
[tex]\implies r = \frac{1}{3}h[/tex]
From equation (1),
[tex]\frac{dV}{dt}=\frac{1}{3}\pi \frac{d}{dx}((\frac{1}{3}h)^2 h)[/tex]
[tex]\frac{dV}{dt}=\frac{1}{27}\pi \frac{d}{dx}(h^3)[/tex]
[tex]\frac{dV}{dt}=\frac{3}{27}\pi h^2 \frac{dh}{dt}[/tex]
[tex]\frac{dV}{dt}=\frac{1}{9}\pi h^2 \frac{dh}{dt}[/tex]
We have,
[tex]\frac{dV}{dt}=1.5\text{ cube cm per sec}, h = 5 cm[/tex]
[tex]1.5=\frac{1}{9}\pi (5)^2 \frac{dh}{dt}[/tex]
[tex]\implies \frac{dh}{dt}=\frac{1.5\times 9}{25\pi}=\frac{27}{50\pi}[/tex]
Hence, the rate of change of the height would be [tex]\frac{27}{50\pi}[/tex] cm per sec.