Answer: 148.263 N
Explanation:
If we draw a free body diagram of the describes situation we will have the following:
Net force in x:
[tex]-F_{fr}+Fcos\theta=0[/tex] (1)
Where:
[tex]F_{fr}=\mu_{k}N[/tex] is the friction force
[tex]F[/tex] is the force exerted on the rope to move the box
[tex]\theta=30\°[/tex] is the angle
Net force in y:
[tex]N+Fsin\theta-W=0[/tex] (2)
Where:
[tex]N[/tex] is the Normal force
[tex]W=mg[/tex] is the force due gravity on the box (its weight), being [tex]m=50 kg[/tex] the mass of the box and [tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity
Rewritting (2):
[tex]N+m a sin\theta-mg=0[/tex] (3)
Where [tex]a=2.5 m/s^{2}[/tex]
[tex]N=m(g-a sin\theta)[/tex] (4)
[tex]N=50 kg(9.8 m/s^{2}-(2.5 m/s^{2}) sin30\°)[/tex] (5)
[tex]N=428 N[/tex] (6) This is the value of the normal force
Rewritting (1):
[tex]-\mu_{k}N+Fcos\theta=0[/tex] (6)
Finding [tex]F[/tex]:
[tex]F=\frac{\mu_{k}N}{cos 30\°}[/tex] (7)
[tex]F=\frac{(0.3)(428 N)}{cos 30\°}[/tex]
Finally:
[tex]F=148.263 N[/tex]