Answer:
[tex]-\frac{23}{36}g+\frac{5}{12}d[/tex]
Step-by-step explanation:
Given:
[tex]g+\frac{1}{6}d-\frac{3}{4}g+\frac{1}{9}g-g+\frac{1}{4}d[/tex]
Solving for g and d we get,
[tex]g+\frac{1}{6}d-\frac{3}{4}g+\frac{1}{9}g-g+\frac{1}{4}d\\\frac{1}{6}d-\frac{3}{4}g+\frac{1}{9}g+\frac{1}{4}d[/tex]
Now taking LCM for all we get,
[tex]\frac{1\times6}{6\times6}d-\frac{3\times9}{4\times9}g+\frac{1\times 4}{9\times4}g+\frac{1\times 9}{4\times 9}d\\\frac{6}{36}d-\frac{27}{36}g+\frac{4}{36}g+\frac{9}{36}d\\\frac{6d-27g+4g+9d}{36}\\\frac{-23g+15d}{36}\\-\frac{23}{36}g+\frac{15}{36}d\\-\frac{23}{36}g+\frac{5}{9}d[/tex]