Answer: 27.071 years.
Step-by-step explanation:
The given function : [tex]P(t) = 437.6(1.031)^t[/tex] is used to model the population of an organism in a specific region after t years.
To find : t , when P(t)=1000
Substitute P(t)=1000 in the given function , we get
[tex]1000 = 437.6(1.031)^t\\\\\Rightarrow\ \dfrac{1000}{437.6}=(1.031)^t\\\\\Rightarrow\ 2.2852=(1.031)^t[/tex]
Taking natural log on both sides , we get
[tex]\ln(2.2852)=\ln ((1.031)^t)\\\\\Rightarrow\ \ln(2.2852)=t(\ln (1.031))\\\\\Rightarrow\ t=\dfrac{ \ln(2.2852}{\ln(1.031)}\\\\\Rightarrow\ t=\dfrac{0.8264535}{0.0305292}\\\\\Rightarrow\ t=27.070918989\approx27.071[/tex]
Hence, The number of organisms will be 1000 after t= 27.071 years.