A 40.0-mL solution contains 0.019 M barium chloride (BaCl2). What is the minimum concentration of sodium sulfate (Na2SO4) required in the solution to produce a barium sulfate (BaSO4) precipitate? The solubility product for barium sulfate is Ksp = 1.1 ✕ 10−10.

Respuesta :

Answer:

The minimum concentration of sodium sulfate required to producer precipitation is [tex]5.790\times 10^{-9} M[/tex].

Explanation:

[tex]BaCl_2\rightarrwo Ba^{2+}+2Cl^-[/tex]

Concentration of barium chloride= [tex][BaCl_2]=0.019 M[/tex]

Concentration of barium ions = [tex][Ba^{2+}][/tex]

1 mol of barium chloride gives 1 mol of barium ions.

[tex][Ba^{2+}]=[BaCl_2]=0.019 M[/tex]

The solubility product for barium sulfate= [tex] K_{sp} = 1.1\times 10^{-10}[/tex]

[tex]BaSO_4\rightleftharpoons Ba^{2+}+SO_4^{2-}[/tex]

              0.019 M              S

The expression of solubility product for barium sulfate:

[tex]K_{sp}=[Ba^{2+}]\times S[/tex]

[tex]K_{sp}=0.019 M\times S[/tex]

[tex]S=\frac{1.1\times 10^{-10}}{0.019 M}=5.790\times 10^{-9} M[/tex]

The minimum concentration of sulfate ions  =[tex][SO_4^{2-}]=5.790\times 10^{-9} M[/tex]

[tex]Na_2SO_4(aq)\rightarrow 2Na^+(aq)+SO_4^{2-}(aq)[/tex]

1 mole of sulfate ions are proceed form 1 mole of sodium sulfate solution.

Then [tex]5.790\times 10^{-9} M[/tex] sulfate ions will be obtained from:

[tex]=1\times 5.790\times 10^{-9} M=5.790\times 10^{-9} M[/tex] of sodium sulfate

The minimum concentration of sodium sulfate required to producer precipitation is [tex]5.790\times 10^{-9} M[/tex].