Answer:
[tex]v=7.87m/s[/tex]
Explanation:
To complete the question so: Gayle's mass is 49.0 k g , the sled has a mass of 5.15 k g and her brother has a mass of 30.0 k g .
[tex]K_1+E_1+E_2=K_{f1}+K_{f2}+K_{f3}[/tex]
[tex]\frac{1}{2}*m_1*v_1+m_2*g*h_1+m_3*g*h_3=\frac{1}{2}*m_1*v_{f}^2+\frac{1}{2}*m_2*v_{f}^2+\frac{1}{2}*m_3*v_{f}^2[/tex]
[tex]\frac{1}{2}*m_1*v_1+m_2*g*h_1+m_3*g*h_3=\frac{1}{2}*(m_1+m_2+m_3)*v_f^2[/tex]
Solve to find their speed at the bottom if the hill so:
[tex]\frac{1}{2}*49kg*(4.15m/s)^2+5.15kg*9.8m/s^2*15.0+30kg*9.8m/s^2*5.0m=\frac{1}{2}*(49kg+5.15kg+30kg)v^2[/tex]
[tex]2649.001=42.075kg*v^2[/tex]
[tex]v^2=61.964m^2/s^2[/tex]
[tex]v=7.87m/s[/tex]