A substance with a half life is decaying exponentially. If there are initially 12 grams of the substance and after 70 minutes there are 7 grams, after how many minutes will there be 2 grams remaining? Round your answer to the nearest whole number.

Respuesta :

Answer: 233 min

Step-by-step explanation:

This problem can be solved by the following equation:

[tex]A=A_{o} e^{-kt}[/tex]  (1)

Where:

[tex]A=7 g[/tex] is the quantity left after time [tex]t[/tex]

[tex]A_{o}=12 g[/tex] is the initial quantity

[tex]t=70 min[/tex] is the time elapsed

[tex]k[/tex] is the constant of decay for the material

So, firstly we need to find the value of [tex]k[/tex] from (1) in order to move to the next part of the problem:

[tex]\frac{A}{A_{o}}=e^{-kt}[/tex]  (2)

Applying natural logarithm on both sides of the equation:

[tex]ln(\frac{A}{A_{o}})=ln(e^{-kt})[/tex]  (3)

[tex]ln(\frac{A}{A_{o}})=-kt[/tex]  (4)

[tex]k=-\frac{ln(\frac{A}{A_{o}})}{t}[/tex]  (5)

[tex]k=-\frac{ln(\frac{7 g}{12 g})}{70 min}[/tex]  (6)

[tex]k=0.00769995 min^{-1}[/tex]  (7)  Now that we have the value of [tex]k[/tex] we can solve the other part of this problem: Find the time [tex]t[/tex] for [tex]A=2 g[/tex].

In this case we need to isolate [tex]t[/tex] from (1):

[tex]t=-\frac{ln(\frac{A}{A_{o}})}{k}[/tex]  (8)

[tex]t=-\frac{ln(\frac{2 g}{12 g})}{0.00769995 min^{-1}}[/tex]  (9)

Finally:

[tex]t=232.697 min \approx 233 min[/tex]

ACCESS MORE