Respuesta :
Answer: 233 min
Step-by-step explanation:
This problem can be solved by the following equation:
[tex]A=A_{o} e^{-kt}[/tex] (1)
Where:
[tex]A=7 g[/tex] is the quantity left after time [tex]t[/tex]
[tex]A_{o}=12 g[/tex] is the initial quantity
[tex]t=70 min[/tex] is the time elapsed
[tex]k[/tex] is the constant of decay for the material
So, firstly we need to find the value of [tex]k[/tex] from (1) in order to move to the next part of the problem:
[tex]\frac{A}{A_{o}}=e^{-kt}[/tex] (2)
Applying natural logarithm on both sides of the equation:
[tex]ln(\frac{A}{A_{o}})=ln(e^{-kt})[/tex] (3)
[tex]ln(\frac{A}{A_{o}})=-kt[/tex] (4)
[tex]k=-\frac{ln(\frac{A}{A_{o}})}{t}[/tex] (5)
[tex]k=-\frac{ln(\frac{7 g}{12 g})}{70 min}[/tex] (6)
[tex]k=0.00769995 min^{-1}[/tex] (7) Now that we have the value of [tex]k[/tex] we can solve the other part of this problem: Find the time [tex]t[/tex] for [tex]A=2 g[/tex].
In this case we need to isolate [tex]t[/tex] from (1):
[tex]t=-\frac{ln(\frac{A}{A_{o}})}{k}[/tex] (8)
[tex]t=-\frac{ln(\frac{2 g}{12 g})}{0.00769995 min^{-1}}[/tex] (9)
Finally:
[tex]t=232.697 min \approx 233 min[/tex]