Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. 2 Al(s) + 3 Mg2+(aq) → 2 Al3+(aq) + 3 Mg(s) A) 1.1 × 1072 B) 8.9 × 10-73 C) 1.1 × 10-72 D) 1.0 × 1024 E) 4.6 × 1031

Respuesta :

Answer: Thus the value of equilibrium constant for the balanced redox reaction at 25°C is [tex]8.9\times 10^{-73}[/tex]

Explanation:

[tex]2Al(s)+3Mg^{2+}(aq)\rightarrow 2Al^{3+}(aq)+3Mg(s)[/tex]

Here Al undergoes oxidation by loss of electrons, thus act as anode. magnesium undergoes reduction by gain of electrons and thus act as cathode.

[tex]E^0=E^0_{cathode}- E^0_{anode}[/tex]

Where both [tex]E^0[/tex] are standard reduction potentials.

[tex]E^0_{[Mg^{2+}/Mg]}= -2.37V[/tex]

[tex]E^0_{[Al^{3+}/Al]}=-1.66V[/tex]

[tex]E^0=E^0_{[Mg^{2+}/Mg]}- E^0_{[Al^{3+}/Al]}[/tex]

[tex]E^0=-2.37V-(-1.66)=-0.71[/tex]

The standard emf of a cell is related to Gibbs free energy by following relation:

[tex]\Delta G=-nFE^0[/tex]

[tex]\Delta G[/tex] = gibbs free energy

n= no of electrons gained or lost = 6

F= faraday's constant

[tex]E^0[/tex] = standard emf

[tex]\Delta G=-6\times 96500\times (-0.71)=411090J[/tex]

The Gibbs free energy is related to equilibrium constant by following relation:

[tex]\Delta G=-2.303RTlog K[/tex]

R = gas constant = 8.314 J/Kmol

T = temperature in kelvin =[tex]25^0C=25+273=298K[/tex]

K = equilibrium constant

[tex]\Delta G=-2.303RTlog K[/tex]

[tex]411090=-2.303\times 8.314\times 298\times logK[/tex]

[tex]K=8.9\times 10^{-73}[/tex]

Thus the value of equilibrium constant for the balanced redox reaction at 25°C is [tex]8.9\times 10^{-73}[/tex]

ACCESS MORE