Answer: Thus the value of equilibrium constant for the balanced redox reaction at 25°C is [tex]8.9\times 10^{-73}[/tex]
Explanation:
[tex]2Al(s)+3Mg^{2+}(aq)\rightarrow 2Al^{3+}(aq)+3Mg(s)[/tex]
Here Al undergoes oxidation by loss of electrons, thus act as anode. magnesium undergoes reduction by gain of electrons and thus act as cathode.
[tex]E^0=E^0_{cathode}- E^0_{anode}[/tex]
Where both [tex]E^0[/tex] are standard reduction potentials.
[tex]E^0_{[Mg^{2+}/Mg]}= -2.37V[/tex]
[tex]E^0_{[Al^{3+}/Al]}=-1.66V[/tex]
[tex]E^0=E^0_{[Mg^{2+}/Mg]}- E^0_{[Al^{3+}/Al]}[/tex]
[tex]E^0=-2.37V-(-1.66)=-0.71[/tex]
The standard emf of a cell is related to Gibbs free energy by following relation:
[tex]\Delta G=-nFE^0[/tex]
[tex]\Delta G[/tex] = gibbs free energy
n= no of electrons gained or lost = 6
F= faraday's constant
[tex]E^0[/tex] = standard emf
[tex]\Delta G=-6\times 96500\times (-0.71)=411090J[/tex]
The Gibbs free energy is related to equilibrium constant by following relation:
[tex]\Delta G=-2.303RTlog K[/tex]
R = gas constant = 8.314 J/Kmol
T = temperature in kelvin =[tex]25^0C=25+273=298K[/tex]
K = equilibrium constant
[tex]\Delta G=-2.303RTlog K[/tex]
[tex]411090=-2.303\times 8.314\times 298\times logK[/tex]
[tex]K=8.9\times 10^{-73}[/tex]
Thus the value of equilibrium constant for the balanced redox reaction at 25°C is [tex]8.9\times 10^{-73}[/tex]