Answer:
The confidence interval for the population mean μ is [tex]32.487<\mu <30.313[/tex]
Step-by-step explanation:
Given :
Number of weights of newborn girls n=185.
Mean [tex]\bar{x}=31.4[/tex] hg
Standard deviation s=7.5 hg
Use a 95% confidence level i.e. cl=0.95
To find : What is the confidence interval for the population mean μ?
Solution :
Using t-distribution,
The degree of freedom [tex]DF=n-1=185-1=184[/tex]
[tex]\alpha=\frac{1-0.95}{2}[/tex]
[tex]\alpha=0.025[/tex]
The t critical value is t=1.973.
The confidence interval build is
[tex]CI=\bar{x}\pm(t\cdot \frac{s}{\sqrt{n}})[/tex]
Substitute the values,
[tex]CI=31.4\pm(1.973\cdot \frac{7.5}{\sqrt{185}})[/tex]
[tex]CI=31.4\pm(1.973\cdot 0.5514)[/tex]
[tex]CI=31.4\pm(1.087)[/tex]
[tex]31.4+1.087<\mu <31.4-1.087[/tex]
[tex]32.487<\mu<30.313[/tex]
Therefore, the confidence interval for the population mean μ is [tex]32.487<\mu <30.313[/tex]