Answer:
A) The graph shifts 5 units left and 3 units up.
Step-by-step explanation:
For a function [tex]f(x)[/tex] following transformation rules is applied.
[tex]f(x-c)\rightarrow[/tex] shifts function [tex]c[/tex] units to the right.
[tex]f(x+c)\rightarrow[/tex] shifts function [tex]c[/tex] units to the right.
[tex]f(x)+b\rightarrow[/tex] shifts function [tex]c[/tex] units upward.
[tex]f(x)-b\rightarrow[/tex] shifts function [tex]c[/tex] units down upward.
Given function [tex]f(x)[/tex]:
[tex]f(x)=\frac{1}{x-4}+3[/tex]
Function [tex]g(x)[/tex]:
[tex]g(x)=\frac{1}{x+1}+6[/tex]
So, to transform [tex]f(x)[/tex] to [tex]g(x)[/tex] we can make changes as
[tex]f(x)=\frac{1}{x-4+(5)}+3+(3)=\frac{1}{x+1}+6=g(x)[/tex]
Comparing the two function we conclude the following transformation taking place:
[tex]g(x)=f(x+5)+3[/tex]
From the above rule stated, we can make a statement about the transformation as following:
The graph shifts 5 units left and 3 units up.