By Green's theorem, the work done by [tex]\vec F[/tex] over the path (call it [tex]C[/tex]) is
[tex]W=\displaystyle\int_C(x(x+y)\,\vec\imath+xy^2\,\vec\jmath)\cdot\mathrm d\vec r=\int_Cx(x+y)\,\mathrm dx+xy^2\,\mathrm dy[/tex]
[tex]=\displaystyle\iint_D\frac{\partial(xy^2)}{\partial x}-\frac{\partial(x(x+y))}{\partial y}\,\mathrm dA[/tex]
(where [tex]D[/tex] denotes the region bordered by [tex]C[/tex])
[tex]=\displaystyle\int_0^4\int_0^{4-x}y^2-x\,\mathrm dy\,\mathrm dx=\boxed{\frac{32}3}[/tex]