Respuesta :

Answer:

The pairs of integer having two real solution for[tex]ax^{2} -6x+c = 0[/tex] are

  1. [tex]a = -4, c = 5[/tex]
  2. [tex]a = 1, c = 6[/tex]
  3. [tex]a = 2, c = 3[/tex]
  4. [tex]a = 3, c = 3[/tex]

Step-by-step explanation:

Given

[tex]ax^{2} -6x+c = 0[/tex]

Now we will solve the equation by putting all the 6 pairs so we get the  following

[tex]-3x^{2} -6x-5 = 0[/tex] for [tex]a = -3 , c=-5[/tex]

[tex]-4x^{2} -6x+5 = 0[/tex] for [tex]a = -4 , c=5[/tex]

[tex]1x^{2} -6x+6 = 0[/tex] for [tex]a = 1 , c=6[/tex]

[tex]2x^{2} -6x+3 = 0[/tex] for [tex]a = 2 , c=3[/tex]

[tex]3x^{2} -6x+3 = 0[/tex] for [tex]a = 3 , c=3[/tex]

[tex]5x^{2} -6x+4 = 0[/tex] for [tex]a = 5 , c=4[/tex]

The above  all are Quadratic equations inn general form [tex]ax^{2} +bx+c=0[/tex]

where we have a,b and c constant values

So for a real Solution we must have

[tex]Disciminant , b^{2} -4\timesa\timesc \geq 0[/tex]

for [tex]a = -3 , c=-5[/tex] we have

[tex]Discriminant =-24[/tex] which is less than 0 ∴ not a real solution.

for [tex]a = -4 , c=5[/tex] we have

[tex]Discriminant = 116[/tex] which is greater than 0 ∴ a real solution.

for [tex]a = 1 , c=6[/tex] we have

[tex]Discriminant =12[/tex] which is greater than 0 ∴ a real solution.

for [tex]a = 2 , c=3[/tex] we have

[tex]Discriminant =12[/tex] which is greater than 0 ∴ a real solution.

for [tex]a = 3 , c=3[/tex] we have

[tex]Discriminant =0[/tex] which is equal to 0 ∴ a real solution.

for [tex]a = 5 , c=4[/tex] we have

[tex]Discriminant =-44[/tex] which is less than 0 ∴ not a real solution.

ACCESS MORE