Answer:
[tex]1,139\ shoppers[/tex]
Step-by-step explanation:
we know that
In this problem we have a exponential function of the form
[tex]y=a(b)^{x}[/tex]
where
a is the initial value or y-intercept
b is the base of the exponential function
r is the rate in decimal form
b=(1+r)
In this problem we have
x ----> the number of days
y ----> the number of shoppers
a=120
r=10%=10/100=0.10
b=1+0.10=1.10
substitute the values
[tex]y=120(1.10)^{x}[/tex]
First day
[tex]y=120[/tex]
Second day
For x=1 day
substitute the value of x in the equation and solve for y
[tex]y=120(1.10)^{1}=132[/tex]
Third day
For x=2 days
[tex]y=120(1.10)^{2}=145[/tex]
Fourth day
For x=3 days
[tex]y=120(1.10)^{3}=160[/tex]
Fifth day
For x=4 days
[tex]y=120(1.10)^{4}=176[/tex]
Sixth day
For x=5 days
[tex]y=120(1.10)^{5}=193[/tex]
Seventh day
For x=6 days
[tex]y=120(1.10)^{6}=213[/tex]
Adds the numbers
[tex]120+132+145+160+176+193+213=1,139[/tex]