Respuesta :
Answer:
There will be produced 0.8448 grams O2
Explanation:
Step 1: Data given
Mass of KO2 = 2.50 grams
Mass of CO2 = 4.50 grams
Molar mass KO2 = 71.1 g/mol
Molar mass of CO2 = 44.01 g/mol
Molar mass of O2 = 32 g/mol
Step 2: The balanced equation
4 KO2(s) + 2 CO2(g) → 2 K2CO3(s) + 3 O2(g)
Step 3: Calculate moles KO2
Moles KO2 = mass KO2 / Molar mass KO2
Moles KO2 = 2.50 grams / 71.1 g/mol
Moles KO2 = 0.0352 moles
Step 4: Calculate moles of CO2:
Moles CO2 = mass CO2 / Molar mass CO2
Moles CO2 = 4.50 grams / 44.01 g/mol
Moles CO2 = 0.102 moles
Step 5: calculate limiting reactant
For 4 moles of KO2 consumed, we need 2 moles of CO2 to produce 2 moles of K2CO3 and 3 moles of O2
KO2 is the limiting reactant. It will completely be consumed. (0.0352 moles).
CO2 is in excess. There will react 0.0352/2 = 0.0176 moles of CO2
There will remain 0.102 - 0.0176 = 0.0844 moles CO2
Step 6: Calculate moles O2 produced
For 4 moles of KO2 consumed, we need 2 moles of CO2 to produce 2 moles of K2CO3 and 3 moles of O2
For 0.0352 moles KO2 consumed, we have 3/4 * 0.0352 = 0.0264 moles of O2 produced
Step 7: Calculate mass of 02 produced
Mass O2 produced = Moles O2 * Molar mass 02
Mass O2 produced = 0.0264 moles * 32 g/mol
Mass O2 produced = 0.8448 grams O2
There will be produced 0.8448 grams O2
Answer:
0.8448 grams of oxygen gas is produced in the reaction of potassium superoxide with carbon dioxide.
Explanation:
The reaction of Potassium superoxide [tex]\rm (KO_2)[/tex] reacts with Carbon dioxide [tex]\rm (CO_2)[/tex] to form Potassium carbonate [tex]\rm (K_2CO_3)[/tex] and Oxygen [tex]\rm (O_2)[/tex].
The reaction will be:
[tex]\rm 4\;KO_2\;+2\;CO_2\;\rightarrow\;2\;K_2CO_3\;+\;3\;O_2[/tex]
4 moles of [tex]\rm KO_2[/tex] and 2 moles of [tex]\rm CO_2[/tex] is required to produce 3 moles of oxygen.
For the of 2.50 g [tex]\rm (KO_2)[/tex]:
The moles of [tex]\rm (KO_2)[/tex] is, [tex]\rm \frac{weight}{molecular weight}[/tex]
= [tex]\rm \frac{2.50}{71.1}[/tex]
0.0352 moles of [tex]\rm (KO_2)[/tex] is there.
The moles of [tex]\rm CO_2[/tex] will be:
= [tex]\rm \frac{4.50}{44.01}[/tex]
=0.102 moles of [tex]\rm CO_2[/tex] is there.
Since [tex]\rm CO_2[/tex] is in excess, the half of given moles of [tex]\rm KO_2[/tex] will be consumed.
[tex]\rm KO_2[/tex] consumed will be 0.0176 moles.
The left amount of [tex]\rm CO_2[/tex] will be = 0.102 - 0.0176
= 0.0844 moles.
4 moles of [tex]\rm KO_2[/tex] produces 3 moles of [tex]\rm O_2[/tex].
so, 0.0352 moles = 0.0264 moles of [tex]\rm O_2[/tex]/.
The mass of [tex]\rm O_2[/tex] produces will be: moles [tex]\times[/tex] molecular weight
= 0.0264 [tex]\times[/tex] 32
= 0.8448 grams
From 2.50 grams of [tex]\rm KO_2[/tex] and 4.50 grams of [tex]\rm CO_2[/tex], 0.8448 grams of [tex]\rm O_2[/tex] has been produced.
For more information, refer the link:
https://brainly.com/question/21691498?referrer=searchResults