Respuesta :
[tex]\dfrac{2}{5},\dfrac{13}{15},\dfrac{3}{5},\dfrac{1}{5},\dfrac{1}{5}[/tex]
step-by-step explanation:
The intersection of two sets A and B, denoted by A ∩ B, is the set containing all elements of A that also belong to B.
The union (denoted by ∪) of a collection of sets is the set of all elements in the collection.
[tex]P(s)[/tex] of a set [tex]s[/tex] is defined as ratio of number of elements in [tex]s[/tex] to the number of elements in [tex]universal set[/tex]
given [tex]Universalset=[/tex][tex]\{[/tex][tex]\text{2,3,4,5,6,7,8,9,12,13,14,16,20,22,56}[/tex][tex]\}[/tex]
given [tex]A=\{9,12,13,20,22,56\}[/tex] and [tex]H=\{4,5,8,9,16,22\}[/tex]
and [tex]C=\{1,4,20,22,56\}[/tex]
For Question A:
[tex]A[/tex]∩[tex]H[/tex]=[tex]\{9,12,13,20,22,56\}[/tex] ∩ [tex]\{4,5,8,9,16,22\}[/tex]
=[tex]\{9,22}\}[/tex]
([tex]A[/tex]∩[tex]H[/tex])∪[tex]C[/tex]=[tex]\{9,22}\}[/tex] ∪ [tex]C=\{1,4,20,22,56\}[/tex]=[tex]\{1,4,9,20,22,56\}[/tex]
[tex]p((A[/tex]∩[tex]H)[/tex]∪[tex]C)[/tex]=[tex]\frac{6}{15}=\frac{2}{5}[/tex]
For Question B:
[tex]H[/tex]∩[tex]C[/tex]=[tex]\{4,22\}[/tex]
[tex]p(H[/tex]∩[tex]C)[/tex]'=[tex]\frac{15-2}{15}=\frac{13}{15}[/tex]
For Question C:
[tex]p(H)[/tex]'=[tex]\frac{15-6}{15}=\frac{3}{5}[/tex]
For Question D:
[tex]C[/tex]\[tex]H[/tex]=[tex]\{1,20,56\}[/tex]
[tex]p(C[/tex]\[tex]H)[/tex]=[tex]\frac{3}{15}=\frac{1}{5}[/tex]
For Question E:
[tex]A[/tex]\[tex]C[/tex]=[tex]\{9,12,13\}[/tex]
[tex]p(A[/tex]\[tex]C)[/tex]=[tex]\frac{3}{15}=\frac{1}{5}[/tex]