Using the following information = Universal set = {2,3,4,5,6,7,8,9,12,13,14,16,20,22,56). Subset A = {9,12,13,20,22,56); Subset H= {4,5,8,9,16,22) and Subset C = {1,4,20,22,56} Find: a) P [(AnH)UC] (b) P (HnC)’ (c) P(H)’ (d) P[C\H] (e) P [A\C]

Respuesta :

[tex]\dfrac{2}{5},\dfrac{13}{15},\dfrac{3}{5},\dfrac{1}{5},\dfrac{1}{5}[/tex]

step-by-step explanation:

The intersection of two sets A and B, denoted by A ∩ B, is the set containing all elements of A that also belong to B.

The union (denoted by ∪) of a collection of sets is the set of all elements in the collection.

[tex]P(s)[/tex] of a set [tex]s[/tex] is defined as ratio of number of elements in [tex]s[/tex] to the number of elements in [tex]universal set[/tex]

given [tex]Universalset=[/tex][tex]\{[/tex][tex]\text{2,3,4,5,6,7,8,9,12,13,14,16,20,22,56}[/tex][tex]\}[/tex]

given [tex]A=\{9,12,13,20,22,56\}[/tex] and [tex]H=\{4,5,8,9,16,22\}[/tex]

and [tex]C=\{1,4,20,22,56\}[/tex]

For Question A:

[tex]A[/tex]∩[tex]H[/tex]=[tex]\{9,12,13,20,22,56\}[/tex] ∩ [tex]\{4,5,8,9,16,22\}[/tex]

=[tex]\{9,22}\}[/tex]

([tex]A[/tex]∩[tex]H[/tex])∪[tex]C[/tex]=[tex]\{9,22}\}[/tex] ∪ [tex]C=\{1,4,20,22,56\}[/tex]=[tex]\{1,4,9,20,22,56\}[/tex]

[tex]p((A[/tex]∩[tex]H)[/tex]∪[tex]C)[/tex]=[tex]\frac{6}{15}=\frac{2}{5}[/tex]

For Question B:

[tex]H[/tex]∩[tex]C[/tex]=[tex]\{4,22\}[/tex]

[tex]p(H[/tex]∩[tex]C)[/tex]'=[tex]\frac{15-2}{15}=\frac{13}{15}[/tex]

For Question C:

[tex]p(H)[/tex]'=[tex]\frac{15-6}{15}=\frac{3}{5}[/tex]

For Question D:

[tex]C[/tex]\[tex]H[/tex]=[tex]\{1,20,56\}[/tex]

[tex]p(C[/tex]\[tex]H)[/tex]=[tex]\frac{3}{15}=\frac{1}{5}[/tex]

For Question E:

[tex]A[/tex]\[tex]C[/tex]=[tex]\{9,12,13\}[/tex]

[tex]p(A[/tex]\[tex]C)[/tex]=[tex]\frac{3}{15}=\frac{1}{5}[/tex]