An aluminum oxide component must not fail when a tensile stress of 16 MPa is applied. Determine the maximum allowable surface crack length if the surface energy of aluminum oxide is 0.90 J/m2. The modulus of elasticity of this material is 393 GPa.

Respuesta :

Answer:

0.88 mm

Explanation:

The maximum allowable surface crack, c is given by

[tex]c=\frac {2E\gamma}{\pi \sigma_c^{2}}[/tex] where c is cracking length, E is modulus of elasticity, [tex]\gamma[/tex] is surface energy and [tex]\sigma_c[/tex] is tensile stress.

Substituting [tex]393\times 10^{9}[/tex] for E, [tex]16\times 10^{6}[/tex] for [tex]\sigma_c[/tex] and 0.9 for [tex]\gamma[/tex] we obtain

[tex]c=\frac {2\times 393\times 10^{9}\times 0.9}{\pi \times (16\times 10^{6})^{2}}=0.00088 m\approx 0.88mm[/tex]

Therefore, maximum allowable surface crack is 0.88 mm