Respuesta :
Answer: The percent of iron (II) ions in the sample is 71.25 %
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]
Molarity of dichromate solution = 0.0285 M
Volume of solution = 59.2 mL = 0.0592 L (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:
[tex]0.0285M=\frac{\text{Moles of }K_2Cr_2O_7}{0.0592L}\\\\\text{Moles of }K_2Cr_2O_7=(0.0285mol/L\times 0.0592L)=0.0017mol[/tex]
The chemical equation for the reaction of iron (II) ions with potassium dichromate follows:
[tex]Cr_2O_7^{2-}+6Fe^{2+}+14H^+\rightarrow 2Cr^{3+ }+6Fe^{3+}+7H_2O[/tex]
By Stoichiometry of the reaction:
1 mole of dichromate solution reacts with 6 moles of iron (II) ions
So, 0.0017 moles of dichromte solution will react with = [tex]\frac{6}{1}\times 0.0017=0.0102mol[/tex] of iron (II) ions
- To calculate the mass of iron (II) ions for given number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Molar mass of iron = 55.85 g/mol
Moles of iron = 0.0102 moles
Putting values in above equation, we get:
[tex]0.0102mol=\frac{\text{Mass of iron (II) ions}}{55.85g/mol}\\\\\text{Mass of iron (II) ions}=(0.0102mol\times 55.85g/mol)=0.570g[/tex]
- To calculate the mass percentage of iron (II) ions in sample, we use the equation:
[tex]\text{Mass percent of iron (II) ions}=\frac{\text{Mass of iron (II) ions}}{\text{Mass of sample}}\times 100[/tex]
Mass of sample = 0.80 g
Mass of iron (II) ions = 0.570 g
Putting values in above equation, we get:
[tex]\text{Mass percent of iron (II) ions}=\frac{0.570g}{0.80g}\times 100=71.25\%[/tex]
Hence, the percent of iron (II) ions in the sample is 71.25 %