Answer:
Height of the tree is 9.6 cm
Explanation:
We know that, Magnification of an image is written as follows.
[tex]\left(\frac{H_{i}}{H_{o}}\right)=\left(\frac{D_{i}}{D_{o}}\right)[/tex]
Where,
[tex]\begin{array}{l}{\mathrm{H}_{0}=\text { height of the object }} \\ {\mathrm{H}_{\mathrm{i}}=\text { height of the image }} \\ {\mathrm{D}_{0}=\text { distance of the object }} \\ {\mathrm{D}_{\mathrm{i}}=\text { distance of the image }}\end{array}[/tex]
As per given question,
[tex]\begin{array}{l}{\mathrm{H}_{1}=\text { height of the image }=\text { height of the image of the tree on screen }=16 \mathrm{cm}} \\ {\mathrm{D}_{0}=\text { distance of the object }=\text { distance of the tree from the pinhole }=6 \mathrm{cm}} \\ {D_{1}=\text { distance of the image }=\text { distance of the image from the pinhole }=10 \mathrm{cm}} \\ {\mathrm{H}_{0}=\text { height of the object }=\text { height of the tree }}\end{array}[/tex]
Substitute the values in the above formula,
[tex]\begin{array}{l}{\left(\frac{H_{i}}{H_{o}}\right)=\left(\frac{D_{i}}{D_{o}}\right)} \\ {\left(\frac{16}{H_{o}}\right)=\left(\frac{10}{6}\right)} \\ {\mathrm{H}_{\mathrm{o}}=\left(\frac{16 \times 6}{10}\right)} \\ {\mathrm{H}_{\mathrm{o}}=9.6 \mathrm{cm}}\end{array}[/tex]
Height of the tree is 9.6 cm.