a rectangular parking lot has a length that is 8 yards greater than the width. the area of the parking lot is 180 yards. find the length and the width.

Respuesta :

Answer:

Sorry the Length is 18, while the width/breadth is 10

Ver imagen DeeSilver

The length and the width of the parking lot is 18 yards and 10 yards respectively.

The given parameters;

  • Let the width of the rectangular plot, = W
  • length of the rectangular plot, L = W + 8
  • area of the parking lot, A = 180 yards

The width and length of the parking lot is calculated as follows;

[tex]l \times w = A\\\\w(w + 8) = 180\\\\w^2 + 8w = 180\\\\w^2 + 8w - 180 = 0[/tex]

factorize the equation as follows;

w² + 18w - 8w - 180 = 0

w(w + 18) - 10(w + 18) = 0

(w+18)(w-10) = 0

w = -18, or  10

The width cannot be negative so we choose 10 yards as the width.

The length of the lot is calculated as;

L = w + 8

L = 10 + 8

L = 18 yards

Thus, the length and the width of the parking lot is 18 yards and 10 yards respectively.

Learn more here: https://brainly.com/question/12932084

ACCESS MORE