A football player runs directly down the field for 35 m before turning to the right at an angle of 25 degrees from his original direction and running an additional 15 m before getting tackled. What is the magnitude and direction of the runners’ total displacement?

Respuesta :

Answer:

The magnitude of the displacement is 48.97 m and direction is [tex]7.4^{\circ}[/tex] to the right of his original position.

Explanation:

Given values

A distance ran by football player = 35 m

B distance ran additionally = 15 m

θ angle turned by the football player = 25°

Calculating magnitude:

Total displacement is “c” and calculated by

[tex]C^{2}=\left(C_{x}^{2}+C_{y}^{2}\right)[/tex]

Where,

[tex]C_{x}=A_{x}+B_{x}[/tex]

[tex]C_{y}=B_{x}+B_{y}[/tex]

[tex]A_{x}=0, A_{y}=35[/tex]

[tex]B_{x}=B \sin \theta[/tex]

[tex]\mathrm{B}_{\mathrm{y}}=\mathrm{B} \cos \theta[/tex]

Now, [tex]C_{x}=A_{x}+B_{x}[/tex]

[tex]C_{x}=0+15 \sin 25^{\circ}[/tex]

[tex]C_{x}=15 \times 0.422[/tex]

[tex]C_{x}=6.33 \mathrm{m}[/tex] and

[tex]C_{y}=A_{y}+B_{y}[/tex]

[tex]C_{y}=35+15 \cos 25^{\circ}[/tex]

[tex]C_{y}=35+25 \times 0.906[/tex]

[tex]C_{x}=35+13.59[/tex]

[tex]C_{y}=48.6 \mathrm{m}[/tex]

Total displacement is

[tex]c=\sqrt{\left(c_{x}^{2}+c_{y}^{2}\right)}[/tex]

[tex]C=\sqrt{6.33^{2}+48.6^{2}}[/tex]

[tex]\mathrm{C}=\sqrt{40+2361.96}[/tex]

[tex]C=\sqrt{2401.96}[/tex]

C = 49 m

Calculating Direction:

[tex]\tan \Phi=\frac{C_{x}}{C_{y}}[/tex]

[tex]\Phi=\tan ^{-1}\left(\frac{C_{x}}{C_{y}}\right)[/tex]

[tex]\Phi=\tan ^{-1}\left(\frac{6.33}{48.6}\right)[/tex]

[tex]\Phi=\tan ^{-1} 0.13[/tex]

[tex]\Phi=7.4^{\circ} \text { to the right of down field }[/tex]

The magnitude of the displacement is 48.97 m and direction is [tex]7.4^{\circ}[/tex] to the right of his original position.

ACCESS MORE