Respuesta :

Answer:

The vertex form of the equation is [tex]y=2(x-3)^2+7[/tex]

Step-by-step explanation:

Given equation in standard form:

[tex]y=2x^2-12x+25[/tex]

Completing square method:

Equating the given function to [tex]0[/tex].

[tex]2x^2-12x+25=0[/tex]

Subtracting both sides by [tex]25[/tex].

[tex]2x^2-12x+25-25=0-25[/tex]

[tex]2x^2-12x=-25[/tex]

Taking common factor [tex]2x[/tex].

[tex]2(x^2-6x)=-25[/tex]

Dividing [tex]-6[/tex] by [tex]2[/tex] then adding and subtracting the square of it from the whole term in parenthesis

[tex]2(x-6x+(\frac{6}{2})^2-(\frac{6}{2})^2)=-25[/tex]

[tex]2(x^2-6x+9-9)=0[/tex]

[tex][x^2-6x+9][/tex] can be written as [tex](x-3)^2[/tex].

[tex]2((x-3)^2-9)=-25[/tex]

Using distribution.

[tex]2(x-3)^2-18=-25[/tex]

Adding both sides by 25.

[tex]2(x-3)^2-18+25=-25+25[/tex]

[tex]2(x-3)^2+7=0[/tex]

Equating the above function with [tex]y[/tex]

[tex]y=2(x-3)^2+7[/tex]

The vertex form of the equation is [tex]y=2(x-3)^2+7[/tex]

ACCESS MORE