Rewrite the equation recalling the definitions of secant and tangent:
[tex]\dfrac{\sin^2(x)}{\cos^2(x)}=\dfrac{1}{\cos(x)}-1[/tex]
Rearrange the right hand side:
[tex]\dfrac{\sin^2(x)}{\cos^2(x)}=\dfrac{1-\cos(x)}{\cos(x)}[/tex]
Multiply both sides by cos^2(x):
[tex]\sin^2(x)=\cos(x)-\cos^2(x)[/tex]
Use the fundamental equation of trigonometry to express [tex]\sin^2(x)[/tex] in terms of [tex]\cos^2(x)[/tex]:
[tex]\cos^2(x)+\sin^2(x)=1 \iff \sin^2(x)=1-\cos^2(x)[/tex]
So, the expression becomes
[tex]1-\cos^2(x)=\cos(x)-\cos^2(x)[/tex]
Simplifiy [tex]-\cos^2(x)[/tex] from both sides:
[tex]1=\cos(x)[/tex]
Which only happens if x=0.