Respuesta :

Rewrite the equation recalling the definitions of secant and tangent:

[tex]\dfrac{\sin^2(x)}{\cos^2(x)}=\dfrac{1}{\cos(x)}-1[/tex]

Rearrange the right hand side:

[tex]\dfrac{\sin^2(x)}{\cos^2(x)}=\dfrac{1-\cos(x)}{\cos(x)}[/tex]

Multiply both sides by cos^2(x):

[tex]\sin^2(x)=\cos(x)-\cos^2(x)[/tex]

Use the fundamental equation of trigonometry to express [tex]\sin^2(x)[/tex] in terms of [tex]\cos^2(x)[/tex]:

[tex]\cos^2(x)+\sin^2(x)=1 \iff \sin^2(x)=1-\cos^2(x)[/tex]

So, the expression becomes

[tex]1-\cos^2(x)=\cos(x)-\cos^2(x)[/tex]

Simplifiy [tex]-\cos^2(x)[/tex] from both sides:

[tex]1=\cos(x)[/tex]

Which only happens if x=0.

RELAXING NOICE
Relax