Respuesta :

Answer

given,

   [tex]f(x) = \dfrac{-e^x}{x - 4}[/tex]

to find the critical point of the given expression

fist differentiating the function

[tex]f'(x) = -\dfrac{(x-4)e^x+ e^x}{(x - 4)^2}[/tex]

[tex]f'(x) = \dfrac{-(x-4)e^x- e^x}{(x - 4)^2}[/tex]

[tex]f'(x) = \dfrac{-e^x(x-3)}{(x - 4)^2}[/tex]

now equating differential equation to zero

[tex] \dfrac{e^x(-x+3)}{(x - 4)^2}=0[/tex]

[tex] e^x(-x+3)=0[/tex]

now,

-x + 3 = 0            and eˣ ≠ 0

x = 3          

the critical number will be equal to x = 3

[tex]y = \dfrac{-e^3}{3 - 4}[/tex]

[tex]y =e^3[/tex]

ACCESS MORE

Otras preguntas