Answer:
Option b.
Step-by-step explanation:
Sample size n = 9
sample mean = 217.222
Standard deviation s = 1.202
alpha a = 0.025
H0 : u = 216
H1 : u > 216 ( claim)
Now run a T test and result is :
Test statistic, t = [tex]\frac{(xbar-u)}{\frac{s}{\sqrt{n}}}[/tex]
t = [tex]\frac{(217.222-216)}{\frac{1.202}{\sqrt{9}}}[/tex]
= [tex]\frac{1.222}{0.40066}}[/tex]
t = 3.0509
Critical value = t(a,n-1) = t(0.025,9-1)
= 2.306
Since t > critical value, Hence reject H0.
Option b. is the answer. Yes, because computed t is greater than the critical value.