Answer:
[tex]F^{'}=(250\sqrt{3},250 })[/tex]
Step-by-step explanation:
We have F´ =500 and [tex]\alpha[/tex]=30º, so x and y components:
F´ = [tex](F_{x} , F_{y})[/tex] this is
[tex]F_{x} = F^{'} *Cos\alpha[/tex]
[tex]F_{y} = F^{'} *Sin\alpha[/tex]
[tex]F_{x} = F`*Cos\alpha =500*Cos30=500*\frac{\sqrt{3} }{2} =250\sqrt{3}[/tex]
[tex]F_{y}=F*Sin\alpha =500*Sin30=500*\frac{1}{2}=250[/tex];
Finally
F' = [tex](250\sqrt{3} , 250)[/tex]