A force of 500.0 is represented graphically with its tail at the origin and the tip pointed in a direction 30.0° above the positive x-axis. What are the x- and y-components of the vector?

Respuesta :

Answer:

[tex]F^{'}=(250\sqrt{3},250 })[/tex]

Step-by-step explanation:

We have =500 and [tex]\alpha[/tex]=30º, so x and y components:

= [tex](F_{x} , F_{y})[/tex] this is

[tex]F_{x} = F^{'} *Cos\alpha[/tex]

[tex]F_{y} = F^{'} *Sin\alpha[/tex]  

[tex]F_{x} = F`*Cos\alpha =500*Cos30=500*\frac{\sqrt{3} }{2} =250\sqrt{3}[/tex]

[tex]F_{y}=F*Sin\alpha  =500*Sin30=500*\frac{1}{2}=250[/tex];

Finally

F' = [tex](250\sqrt{3} , 250)[/tex]

ACCESS MORE