Answer:
T_f= 77.58° C
Explanation:
from simple calorimetry we can write that
[tex]Q_w = m_wc_w(T_f-T_w)[/tex]
and
[tex]Q_g = m_gc_g(T_f-T_w)[/tex]
Where
Q_w = heat content of water
Q_g= heat content of glass
m_g= mass of glass
m_w= mass of water
T_f= final temp
T_w= temp of water
T_g= temp of glass
m_w =mass of water
m_g= mass of glass
The specific heat of glass is 0.2 cal/g · ◦ C and of water 1 cal/g · ◦ C.
Now in given case
Q_w+Q_g=0
therefore
[tex]Q_w = m_wc_w(T_f-T_w)[/tex]+[tex]Q_g = m_gc_g(T_f-T_w)[/tex]=0
⇒T_f= [tex]\frac{m_gc_gT_g+m_wc_wT_g}{m_wc_w+m_gc_g}[/tex]
putting values we get
T_f= [tex]\frac{300\times0.2\times32+157\times1\times95}{157\times1+300\times0.2}[/tex]
T_f= 77.58° C