Answer:
8.19 Joules
Explanation:
m = Mass of ball = 1.3 kg
I = Moment of inertia = 0.075088 kgm²
r = Radius of ball = 0.38 m
v = Linear speed = 3 m/s
Angular speed
[tex]\omega=\frac{v}{r}[/tex]
The linear and rotational kinetic energy will give us the total kinetic energy
[tex]K=\frac{1}{2}mv^2+\frac{1}{2}I\omega^2\\\Rightarrow K=\frac{1}{2}(mv^2+I\omega^2)\\\Rightarrow K=\frac{1}{2}\left(mv^2+I\left(\frac{v}{r}\right)^2\right)\\\Rightarrow K=\frac{1}{2}\left(1.3\times 3^2+0.075088\times \left(\frac{3}{0.38}\right)^2\right)\\\Rightarrow K=8.19\ J[/tex]
The total kinetic energy of the rolling ball is 8.19 Joules