Answer:
Option 4. τ = 2.1 m.N
Explanation:
To calculate the magnitude of the net torque (τ) we are going to use the next equation:
[tex] \tau = I \cdot \alpha [/tex] (1)
where I: rotational inertia and α: angular acceleration
We can to find the angular acceleration from the angular velocity equation:
[tex] \omega^{2} = \omega_{0}^{2} + 2 \alpha \theta [/tex]
[tex] \alpha = \frac{\omega^{2} - \omega_{0}^{2}}{2 \theta} [/tex]
[tex] \alpha = \frac{(6 \frac{rad}{s})^{2} - (5 \frac{rad}{s})^{2}}{2 (\frac {5rev \cdot 2\pi rad}{1 rev})} [/tex]
[tex] \alpha = 0.175 \frac{rad}{s^{2}} [/tex] (2)
Now, introducing the angular acceleration calculated (2) in equation (1), we can find the net torque:
[tex] \tau = I \cdot \alpha = 12 kg\cdot m^{2} \cdot 0.175 \frac{rad}{s^{2}} = 2.1 m \cdot N [/tex]
Hence, the correct answer is option 4: 2.1 m.N
Have a nice day!