Answer:
[tex]\large\boxed{\text{6.79 L}}[/tex]
Explanation:
The pressure is constant, so, to calculate the volume, we can use Charles' Law.
[tex]\dfrac{V_{1}}{T_{1}} = \dfrac{V_{2}}{T_{2}}[/tex]
Data:
V₁ = 3300 L; T₁ = 1200.0 °C
V₂ = ?; T₂ = 30 °C
Calculations:
(a) Convert temperatures to kelvins
T₁ = (1200.0 + 273.15) K = 1473.15 K
T₂ = (30 + 273.15) K = 303.15 K
(b) Calculate the new volume
[tex]\dfrac{33.0}{1473.15} = \dfrac{V_{2}}{303.15}\\\\{ V_{2}} = \dfrac{33.0\times 303.15}{1473.15} = \textbf{6.79 L}\\\\\text{The new volume of the gas is $\large \boxed{\textbf{6.79 L}}$}\\[/tex]