Answer:
5.7141 m
Explanation:
Here the potential and kinetic energy will balance each other
[tex]mgh=\frac{1}{2}mv^2\\\Rightarrow v=\sqrt{2gh}[/tex]
This is the initial velocity of the system and the final velocity is 0
t = Time taken = 0.04 seconds
F = Force = 18000 N
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Equation of motion
[tex]v=u+at\\\Rightarrow a=\frac{v-u}{t}[/tex]
From Newton's second law
[tex]F=ma\\\Rightarrow F=m\frac{v-u}{t}\\\Rightarrow 18000=68\frac{0-\sqrt{2gh}}{0.04}\\\Rightarrow \frac{18000}{68}\times 0.04=-\sqrt{2\times 9.81\times h}\\\Rightarrow 10.58823=-\sqrt{2\times 9.81\times h}[/tex]
Squarring both sides
[tex]112.11061=2\times 9.81\times h\\\Rightarrow h=\frac{112.11061}{2\times 9.81}\\\Rightarrow h=5.7141\ m[/tex]
The height from which the student fell is 5.7141 m