Answer:
[tex]\dfrac{V_2}{V_1}=2.402[/tex]
Explanation:
Given that
Lets take radius of pipe A = R₁
Lets take radius of pipe B = R₂
R₂/R₁ = 1.55
These pipes are connected in the parallel connection that is why pressure difference will be same
[tex]Q=\dfrac{\pi R^4\Delta P}{8\eta L}[/tex]
[tex]\Delta P=\dfrac{8\eta LQ}{\pi R^4}{}[/tex]
Given that length of both the pipes is same
So we can say that
[tex]\dfrac{Q_1}{R_1^4}=\dfrac{Q_2}{R_2^4}[/tex]
We know that
Q= A V
A= Area
V= velocity
A=π R²
So we can say that
[tex]\dfrac{V_1R_1^2}{R_1^4}=\dfrac{V_2R_2^2}{R_2^4}[/tex]
[tex]\dfrac{V_1}{R_1^2}=\dfrac{V_2}{R_2^2}[/tex]
[tex]\dfrac{V_1}{V_2}=\dfrac{R_1^2}{R_2^2}[/tex]
[tex]\dfrac{V_2}{V_1}=\dfrac{R_2^2}{R_1^2}[/tex]
[tex]\dfrac{V_2}{V_1}=\dfrac{1.55R_1^2}{R_1^2}[/tex]
[tex]\dfrac{V_2}{V_1}=2.402[/tex]