A tuning fork is struck and oscillates in damped harmonic motion. The amplitude of the motion is measured, and 3 s later it is found that the amplitude has dropped to 1 4 of this value. Find the damping constant c for this tuning fork. (Round your answer to two decimal places.)

Respuesta :

Answer:

C=0.46 s⁻¹

Step-by-step explanation:

The general equation for the damped harmonic system given as

[tex]y=Xe^{-Ct}sin\omega t[/tex]

Where

A= Amplitude

[tex]A=Xe^{-Ct}[/tex]

C=Damping constant

Lets take at time t= t₁,  A= K

And at time t= t₁+3 s ,A= K/4

[tex]A=Xe^{-Ct}[/tex]

[tex]K=Xe^{-Ct_1}[/tex]                   -----------1

[tex]\dfrac{K}{4}=Ke^{-C(t_1+3)}[/tex]                    -------------2

From equation 1 and 2

[tex]Xe^{-Ct_1}=Ke^{-C(t_1+3)}[/tex]

[tex]1=4e^{-3C}[/tex]

[tex]e^{3C}=4[/tex]

[tex]C=\dfrac{1}{3}\ln4[/tex]

C=0.46 s⁻¹

ACCESS MORE