Answer
the expression of induced emf
[tex]e = \dfrac{d}{dt}(nAB cos\theta)[/tex]
θ is the angle between the plane and magnetic force
[tex]e = nA cos\theta\dfrac{d}{dt}(B )[/tex]
θ = 0°
a)[tex]e = nA cos 0^0\dfrac{d}{dt}(B )[/tex]
[tex]e = nA \dfrac{dB}{dt}[/tex]
[tex]e = 1 \times \pi \0.02^2 \times 40 \times 10^{-3}[/tex]
[tex]e = 1 \times \pi \0.02^2 \times 40 \times 10^{-3}[/tex]
e = 0.05 mV
b) induced current
[tex]i = \dfrac{e}{R}[/tex]
[tex]i = \dfrac{0.05\times 10^{-3}}{0.8}[/tex]
i = 0.063 mA
c) Rate of heat change
P = I² R
P = 0.063² x 0.8
P = 0.003175 µW