Answer:
$1,200
Step-by-step explanation:
Data provided in the question:
R'(x)= -0.1x + 40
now,
Revenue function = ∫R'(x)= ∫(-0.1x + 40)
or
R(x) = [tex]\frac{-0.1x^2}{2}+40x+c[/tex]
here, c is the integration constant
also,
at x = 0, Revenue R = 0
thus,
0 = [tex]\frac{-0.1(0)^2}{2}+40(0)+c[/tex]
or
c = 0
therefore,
we get the revenue function as;
R(x) = [tex]\frac{-0.1x^2}{2}+40x[/tex]
a) For x = 230 units
R(230) = [tex]\frac{-0.1(230)^2}{2}+40(230)[/tex]
or
R(230) = - 2645 + 9200 = $6,555
b) R(330) = [tex]\frac{-0.1(330)^2}{2}+40(330)[/tex]
or
R(330) = -5445 + 13,200 = $7,755
Hence,
the addition evenue realized when the production (and sales) level is increased from 230 to 330 units
= $7,755 - $6,555
= $1,200