Answer : The correct option is, (B) [tex]CO_2[/tex]
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.
[tex]R\propto \sqrt{\frac{1}{M}}[/tex]
or,
[tex](\frac{R_1}{R_2})=\sqrt{\frac{M_2}{M_1}}[/tex] ..........(1)
where,
[tex]R_1[/tex] = rate of effusion of unknown gas = [tex]11.9\text{ mL }min^{-1}[/tex]
[tex]R_2[/tex] = rate of effusion of oxygen gas = [tex]14.0\text{ mL }min^{-1}[/tex]
[tex]M_1[/tex] = molar mass of unknown gas = ?
[tex]M_2[/tex] = molar mass of oxygen gas = 32 g/mole
Now put all the given values in the above formula 1, we get:
[tex](\frac{11.9\text{ mL }min^{-1}}{14.0\text{ mL }min^{-1}})=\sqrt{\frac{32g/mole}{M_1}}[/tex]
[tex]M_1=44.2g/mole[/tex]
The unknown gas could be carbon dioxide [tex](CO_2)[/tex] that has approximately 44 g/mole of molar mass.
Thus, the unknown gas could be carbon dioxide [tex](CO_2)[/tex]