Answer:
a. [tex]K_{Axis}=2.574x10^{29}J[/tex]
b. [tex]K_{Orbit}=2.6577x10^{33}J[/tex]
Explanation:
[tex]K_{Axis}=\frac{1}{2}I*w^2[/tex]
[tex]I_{Sphere}=\frac{2}{5}*m*r^2[/tex]
[tex]w=\frac{2\pi }{T}[/tex] , [tex]T=24hrs*\frac{3600s}{1hr} =86400s[/tex]
radius earth = 6371 km
mass earth = 5,972*10^24 kg
a.
[tex]K_{Axis}=\frac{1}{2}*\frac{2}{5}*m*r^2*(\frac{2\pi}{T})^2[/tex]
[tex]K_{axis}=\frac{4\pi^2}{5}*5.98x10^{24}kg*(6.38x10^6m)^2*(\frac{1}{86400s})^2[/tex]
[tex]K_{Axis}=2.574x10^{29}J[/tex]
b.
[tex]T=1year*\frac{365day}{1year}*\frac{24hr}{1day}*\frac{3600s}{1hr}=31536000s[/tex]
[tex]K_{Orbit}=\frac{1}{2}*I*w[/tex]
[tex]I=m*r^2[/tex]
[tex]K_{Orbit}=\frac{1}{2}*m*r^2*(\frac{2\pi}{T})^2[/tex]
[tex]K_{Orbit}=\frac{4\pi^2}{5}*5.98x10^{24}*6.38x10^6m*(\frac{1}{31.536x10^6s})^2[/tex]
[tex]K_{Orbit}=2.6577x10^{33}J[/tex]