Respuesta :

Answer:

The equation of line in slop-intercept form is given by:

[tex]y=2x+7[/tex]

Step-by-step explanation:

Given equation of line:

[tex]y=2x-4[/tex]

To find the equation of line parallel to the line of the given equation and passes through point (-3,1).

Applying slope relationship between perpendicular lines.

[tex]m_1=m_2[/tex]

where [tex]m_1[/tex] and [tex]m_2[/tex] are slopes of parallel lines.

For the given equation in the form [tex]y=mx+b[/tex] the slope [tex]m_2[/tex] can be found by comparing [tex]y=2x-4[/tex] with standard form.

∴ [tex]m_2=2[/tex]

Thus slope of line parallel to this line [tex]m_1[/tex] would be given as:

∴ [tex]m_1=2[/tex]

The line passes through point (-3,1)

Using point slope form:

[tex]y-y_1=m(x-x_1)[/tex]

Where [tex](x_1,y_1)\rightarrow (-3,1)[/tex] and [tex]m=m_2=2[/tex]

So,

[tex]y-1=2(x-(-3))[/tex]

[tex]y-1=2(x+3)[/tex]

Using distribution.

[tex]y-1=(2\times x)+(2\times 3)[/tex]

[tex]y-1=2x+6[/tex]

Adding 1 to both sides.

[tex]y-1+1=2x+6+1[/tex]

[tex]y=2x+7[/tex]

Thus the equation of line in slop-intercept form is given by:

[tex]y=2x+7[/tex]

ACCESS MORE