contestada

Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane strain fracture toughness of 40 MPa m. It has been determined that fracture results at a stress of 365 MPa when the maximum internal crack length is 2.5 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 4.0 mm. 90 MPa

Respuesta :

Answer:

[tex]\sigma_2=288.39\,MPa[/tex]

Explanation:

Given:

Strain fracture toughness, [tex]K=40\,MPa.\sqrt{m}[/tex]

maximum internal crack length in first case, [tex]l_1=2.5\times 10^{-3}m[/tex]

stress level in the first case, [tex]\sigma_2 =365\,MPa[/tex]

maximum internal crack length in second case, [tex]l_2=4.0\times 10^{-3}m[/tex]

stress level in the second case, [tex]\sigma_2 =?[/tex]

So, now we require a factor given as:

[tex]Y=\frac{K}{\sigma.\sqrt{\frac{\pi.l}{2} } }[/tex]

[tex]Y=\frac{40}{365\sqrt{\frac{\pi\times 2.5\times 10^{-3}}{2} } }[/tex]

[tex]Y=1.75[/tex]

Now,

[tex]\sigma_2=\frac{K}{Y.\sqrt{\frac{\pi.l}{2} } }[/tex]

[tex]\sigma_2=\frac{40}{1.75\sqrt{\frac{\pi\times 4\times 10^{-3}}{2} } }[/tex]

[tex]\sigma_2=288.39\,MPa[/tex]

ACCESS MORE