Answer:
[tex]\sigma_2=288.39\,MPa[/tex]
Explanation:
Given:
Strain fracture toughness, [tex]K=40\,MPa.\sqrt{m}[/tex]
maximum internal crack length in first case, [tex]l_1=2.5\times 10^{-3}m[/tex]
stress level in the first case, [tex]\sigma_2 =365\,MPa[/tex]
maximum internal crack length in second case, [tex]l_2=4.0\times 10^{-3}m[/tex]
stress level in the second case, [tex]\sigma_2 =?[/tex]
So, now we require a factor given as:
[tex]Y=\frac{K}{\sigma.\sqrt{\frac{\pi.l}{2} } }[/tex]
[tex]Y=\frac{40}{365\sqrt{\frac{\pi\times 2.5\times 10^{-3}}{2} } }[/tex]
[tex]Y=1.75[/tex]
Now,
[tex]\sigma_2=\frac{K}{Y.\sqrt{\frac{\pi.l}{2} } }[/tex]
[tex]\sigma_2=\frac{40}{1.75\sqrt{\frac{\pi\times 4\times 10^{-3}}{2} } }[/tex]
[tex]\sigma_2=288.39\,MPa[/tex]