Answer:
The maximum variance is 250.
Step-by-step explanation:
Consider the provided function.
[tex]V(x)=1000x(1-x)[/tex]
[tex]V(x)=1000x-1000x^2[/tex]
Differentiate the above function as shown:
[tex]V'(x)=1000-2000x[/tex]
The double derivative of the provided function is:
[tex]V''(x)=-2000[/tex]
To find maximum variance set first derivative equal to 0.
[tex]1000-2000x=0[/tex]
[tex]x=\frac{1}{2}[/tex]
The double derivative of the function at [tex]x=\frac{1}{2}[/tex] is less than 0.
Therefore, [tex]x=\frac{1}{2}[/tex] is a point of maximum.
Thus the maximum variance is:
[tex]V(x)=1000(\frac{1}{2})-1000{\frac{1}{2}}^2[/tex]
[tex]V(x)=250[/tex]
Hence, the maximum variance is 250.