Answer:
1.7323
Explanation:
To develop this problem, it is necessary to apply the concepts related to refractive indices and Snell's law.
From the data given we have to:
[tex]n_{air}=1[/tex]
[tex]\theta_{liquid} = 19.38\°[/tex]
[tex]\theta_{air}35.09\°[/tex]
Where n means the index of refraction.
We need to calculate the index of refraction of the liquid, then applying Snell's law we have:
[tex]n_1sin\theta_1 = n_2sin\theta_2[/tex]
[tex]n_{air}sin\theta_{air} = n_{liquid}sin\theta_{liquid}[/tex]
[tex]n_{liquid} = \frac{n_{air}sin\theta_{air}}{sin\theta_{liquid}}[/tex]
Replacing the values we have:
[tex]n_{liquid}=\frac{(1)sin(35.09)}{sin(19.38)}[/tex]
[tex]n_liquid = 1.7323[/tex]
Therefore the refractive index for the liquid is 1.7323