Answer:
[tex]10\sqrt3 ft/s[/tex]
Step-by-step explanation:
We are given that
Height of kite from ground=300 ft
In triangle ABC,
AB=300 ft
Let BC=h ft , AC=y=600 ft
[tex]\frac{dh}{dt}=20 ft /s[/tex]
We have to find the rate at which she must let out the string when the kite is 600 ft away from her.
By pythagorous theorem
[tex](300)^2+h^2=(600)^2[/tex]
[tex]90000+h^2=360000[/tex]
[tex]h^2=360000-90000=270000[/tex]
[tex]h=300\sqrt3 ft [/tex]
[tex](300)^2+h^2=y^2[/tex]
Differentiate w.r.t t
[tex]2h\frac{dh}{dt}=2y\frac{dy}{dt}[/tex]
[tex]h\frac{dh}{dt}=y\frac{dy}{dt}[/tex]
Substitute the values then we get
[tex]300\sqrt3\times 20=600\times \frac{dy}{dt}[/tex]
[tex]\frac{dy}{dt}=\frac{300\sqrt3\times 20}{600}=10\sqrt3 ft /s[/tex]
Hence, she must let out the string at the rate [tex]10\sqrt3 ft/s[/tex] when the kite is 600 ft away from her.