Answer:
9.63 kg m/s
3.32 m/s
Explanation:
[tex]m_1[/tex] = Mass of first cart = 2.9 kg
[tex]m_2[/tex] = Mass of second cart = 1.4 kg
[tex]v_1[/tex] = Velocity of first cart = 3.9 m/s
[tex]v_2[/tex] = Velocity of second cart = -1.2 m/s
Total momentum of the system
[tex]p=m_1v_1+m_2v_2\\\Rightarrow p=2.9\times 3.9+1.4\times -1.2\\\Rightarrow p=9.63\ kg m/s[/tex]
The total momentum of the system is 9.63 kg m/s
Equating the same equation with [tex]v_2=0[/tex]
[tex]p=m_1v_1+m_2v_2\\\Rightarrow v_1=\frac{P-m_2v_2}{m_1}\\\Rightarrow v_1=\frac{9.63-1.4\times 0}{2.9}\\\Rightarrow v_1=3.32\ m/s[/tex]
The velocity of the first cart when the second cart was still at rest is 3.32 m/s