Answer:4.91 cm/s
Explanation:
Given
Specific Gravity [tex]=\frac{\rho _s}{\rho _w}=2.7[/tex]
During falling velocity is [tex]v_1=8.36 cm/s[/tex]
Let during rising velocity be [tex]v_2[/tex]
Density of air [tex]\rho _a=1.20 kg/m^3[/tex]
density of water [tex]\rho _w=998.21\approx 10^3 kg/m^3[/tex]
For Aluminium sphere
[tex]m_1g=F_d+F_b[/tex]
[tex]F_d_1=m_1g-F_b_2[/tex]-------1
For second case
[tex]F_b_2=F_d_2+m_2g[/tex]
[tex]F_b_2-m_2g=F_d_2[/tex]----2
Divide 1 and 2 we get
[tex]\frac{F_d_2}{F_d_1}=\frac{F_b_2-m_2g}{m_1g-F_b_2}[/tex]
Drag force is given by [tex]6\pi \eta rv[/tex]
therefore
[tex]\frac{6\pi \eta rv_2}{6\pi \eta rv_1}=\frac{m_wg-m_2g}{m_1g-m_wg}[/tex]
[tex]\frac{v_2}{v_1}=\frac{m_w-m_2}{m_1-m_w}[/tex]
[tex]\frac{v_2}{v_1}=\frac{\rho _w-\rho _a}{\rho _s-\rho _w } [/tex]
because [tex]mass=volume\times density[/tex]
Taking [tex]\rho _w[/tex] common
[tex]\frac{v_2}{v_1}=\frac{1-\frac{\rho _a}{\rho _w}}{2.7-1}[/tex]
[tex]\frac{v_2}{v_1}=\frac{1-\frac{1.2}{10^3}}{1.7}[/tex]
[tex]v_2=v_1\times \frac{0.9988}{1.7}[/tex]
[tex]v_2=8.36\times 0.587=4.91 cm/s[/tex]