Answer : The value of [tex]\Delta G^o[/tex] across the membrane is 6.80 kJ/mol
Explanation :
The relation between the equilibrium constant and standard Gibbs free energy is:
[tex]\Delta G^o=-RT\times \ln K_{eq}\\\\\Delta G^o=-RT\times \ln (\frac{C_{in}}{C_{out}})[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy = ?
R = gas constant = 8.314 J/K.mol
T = temperature = [tex]37^oC=273+37=310K[/tex]
[tex]K_{eq}[/tex] = equilibrium constant
[tex]C_{in}[/tex] = concentration inside the cell = [tex]10mmol.dm^{3-}[/tex]
[tex]C_{out}[/tex] = concentration outside the cell = [tex]140mmol.dm^{3-}[/tex]
Now put all the given values in the above formula, we get:
[tex]\Delta G^o=-RT\times \ln (\frac{C_{in}}{C_{out}})[/tex]
[tex]\Delta G^o=-(8.314J/K.mol)\times (310K)\times \ln (\frac{10mmol.dm^{3-}}{140mmol.dm^{3-}})[/tex]
[tex]\Delta G^o=6.80\times 10^{3}J/mol=6.80kJ/mol[/tex]
Thus, the value of [tex]\Delta G^o[/tex] across the membrane is 6.80 kJ/mol