Respuesta :

Answer:

[tex]m\angle B=65\°[/tex]

[tex]m\angle C=140\°[/tex]

Step-by-step explanation:

From the figure ABCD given:

[tex]BC=CD[/tex]

[tex]AB=AD[/tex]

[tex]m\angle A=90\°[/tex]

[tex]m\angle D=65\°[/tex]

The given figure ABCD is a kite as it fulfills the properties of a kite.

The properties of kite are:

1) It is 4 sided

2) It has 2 pairs of equal sides adjacent to each other.

3) The angles formed between the 2 pairs of sides is equal.

By the 3rd property of kite stated above:

[tex]m\angle B=m\angle D[/tex]

Given [tex]m\angle D=65\°[/tex]

∴ [tex]m\angle B=65\°[/tex]

Sum of interior angle of a quadrilateral = 360°

So, we have [tex]m\angle A+m\angle B+m\angle C+m\angle D=360\°[/tex]

Plugging in values of the angles known.

[tex]90\°+65\°+m\angle C+65\°=360\°[/tex]

[tex]m\angle C+220\°=360\°[/tex]

Using subtraction property of equality, we have

[tex]m\angle C=360\°-220\°[/tex]

∴ [tex]m\angle C=140\°[/tex]

ACCESS MORE