A flywheel turns through 40 rev as it slows from an angular speed of 1.5 rad/s to a stop.
(a) Assuming a constant angular acceleration, find the time for it to come to rest.
(b) What is its angular acceleration?
(c) How much time is required for it to complete the first 20 of the 40 revolutions

Respuesta :

Answer:

-0.0047 rad/s²

335.103 seconds

99.18 seconds

Explanation:

[tex]\omega_f[/tex] = Final angular velocity

[tex]\omega_i[/tex] = Initial angular velocity = 1.5 ra/s

[tex]\alpha[/tex] = Angular acceleration

[tex]\theta[/tex] = Angle of rotation = 40 rev

t = Time taken

Equation of rotational motion

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}\\\Rightarrow \alpha=\frac{0^2-1.5^2}{2\times 2\pi \times 40}\\\Rightarrow \alpha=-0.0047\ rad/s^2[/tex]

Acceleration while slowing down is -0.0047 rad/s²

[tex]t=\frac{\omega_f-\omega_i}{\alpha}\\\Rightarrow t=\frac{0-1.5}{-0.0047}\\\Rightarrow t=335.103\ s[/tex]

Time taken to slow down is 335.103 seconds

[tex]\theta=\omega_it+\frac{1}{2}\alpha t^2\\\Rightarrow 20\times 2\pi=1.5\times t+\frac{1}{2}\times -0.0047\times t^2\\\Rightarrow 0.00235t^2-1.5t+125.66=0[/tex]

Solving the equation

[tex]t=\frac{-\left(-1.5\right)+\sqrt{\left(-1.5\right)^2-4\cdot \:0.00235\cdot \:125.66}}{2\cdot \:0.00235}, \frac{-\left(-1.5\right)-\sqrt{\left(-1.5\right)^2-4\cdot \:0.00235\cdot \:125.66}}{2\cdot \:0.00235}\\\Rightarrow t=539.11, 99.18\ s[/tex]

The time required for it to complete the first 20 is 99.18 seconds as 539.11>335.103

ACCESS MORE