Answer:
-0.0047 rad/s²
335.103 seconds
99.18 seconds
Explanation:
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity = 1.5 ra/s
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation = 40 rev
t = Time taken
Equation of rotational motion
[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}\\\Rightarrow \alpha=\frac{0^2-1.5^2}{2\times 2\pi \times 40}\\\Rightarrow \alpha=-0.0047\ rad/s^2[/tex]
Acceleration while slowing down is -0.0047 rad/s²
[tex]t=\frac{\omega_f-\omega_i}{\alpha}\\\Rightarrow t=\frac{0-1.5}{-0.0047}\\\Rightarrow t=335.103\ s[/tex]
Time taken to slow down is 335.103 seconds
[tex]\theta=\omega_it+\frac{1}{2}\alpha t^2\\\Rightarrow 20\times 2\pi=1.5\times t+\frac{1}{2}\times -0.0047\times t^2\\\Rightarrow 0.00235t^2-1.5t+125.66=0[/tex]
Solving the equation
[tex]t=\frac{-\left(-1.5\right)+\sqrt{\left(-1.5\right)^2-4\cdot \:0.00235\cdot \:125.66}}{2\cdot \:0.00235}, \frac{-\left(-1.5\right)-\sqrt{\left(-1.5\right)^2-4\cdot \:0.00235\cdot \:125.66}}{2\cdot \:0.00235}\\\Rightarrow t=539.11, 99.18\ s[/tex]
The time required for it to complete the first 20 is 99.18 seconds as 539.11>335.103